

Bifurcation Spiking Neural Networks (JMLR'21)

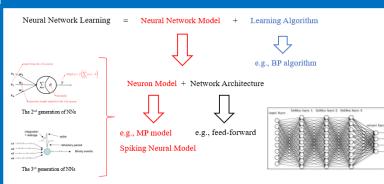
Shao-Qun Zhang, Zhao-Yu Zhang, and Zhi-Hua Zhou

LAMDA Group, Nanjing University, Nanjing, China

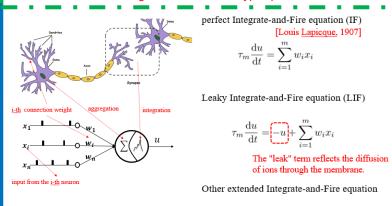
Contact

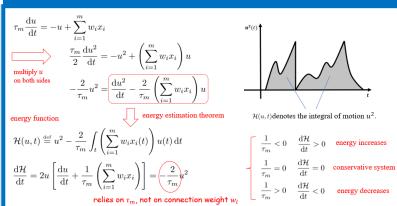
zhangsg@lamda.nju.edu.cn zhangzhaoyu@lamda.nju.edu.cn zhouzh@lamda.nju.edu.cn

Spiking Neural Networks



SNNs take into account the time of spike firing rather than simply relying on the accumulated signal strength in conventional neural networks, and thus offering the possibility for modeling time-dependent data. The fundamental spiking neural model is usually formulated as a first-order parabolic equation with many biologically realistic (i.e., internal) hyper-parameters. Thus, the performance of SNNs depends not only on determining the neural network architecture and training connection weights as well as conventional deep neural networks but also on the careful tuning of these internal hyper-parameters.





Investigation from Dynamical Systems

Theorem 1 Given the initial condition $u_0 = 0$, the dynamical system led by one layer of LIF neurons is a bifurcation dynamical system, and τ_m is the corresponding bifurcation hyper-parameter.

LIF solution

Gradients

integration on the time interva

\Box The setting of τ_m should be adaptive to environment or data

LIF
$$\tau_m \frac{\mathrm{d}u}{\mathrm{d}t} = -u + \sum_{i=1}^m w_i x_i \left(\frac{1}{\tau_m} > 0\right)$$

 \Rightarrow good at handling the dissipative system
 \Rightarrow not suitable for handling the conservative and energy-diffusion systems

 \Box The role of τ_m cannot be replaced by the connection weights

$$\frac{\partial \mathcal{H}}{\partial t} = -\frac{2}{\tau_m} u^2$$
 relies on τ_m , not on connection weight w_i

Gradient-based approach

> Alternating gradient optimization

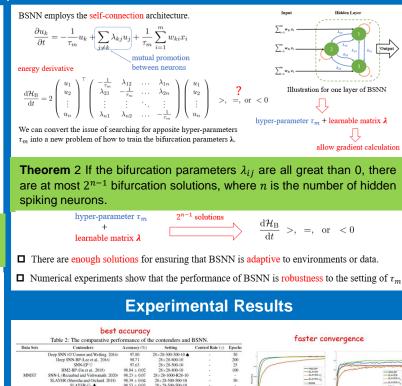
lack of convergence guarantee

> Pack τ_m and w_i as one parameter

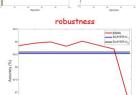
easy to fall into the problems of gradient explosion and vanishing

Zero-order approach

succeeds on an apposite initialization and larger computation and storage



Bifurcation Spiking Neural Networks



 87.51 ± 0.23 hidden layers with 300 enilsing neurone, white \$00, is one hidden layer with \$ SNN-EP (O'Connor et al. 2019) propos and -U2 indicate the alternating op

92.87 98.78

 98.84 ± 0.02

 98.89 ± 0.06

 90.53 ± 0.04

 90.61 ± 0.02

 85.73 ± 0.16

HM2-BF

SLAYER

SLAYER-U SNN (this w

HM2-BF SLAYER

SLAYER-U

SLAYER-U

ST-RSBP (Zhang and Li. 2019) BSNN (this work)

HM2-BF SNN-L SLAYEF

SLAYER-U

BSNN (this wor

 $(s - t')x_i(s) ds$

2*28×28-10000-

2*28×28-800-10

2*28×28-800-10

2*28×28-500-500-1

2428 - 28-500-500-1

28×28-500-500-

28×28-500-500-1

28×28-500-500-10

28×28-500-500-

8×28-400-R400-10 28×28-500-500-1